Introduction to Pitch Perception

hn Pierce

Pitch

Most musical instruments, except percussion instruments and some
bells, have a clear pitch that is associated with the periodicity of the
sound they produce. Nearly periodic sounds have nearly harmonic
partials. A vibrating string or column of air produces nearly periodic
sounds with nearly harmonic partials. One orchestral instrument
can be tuned to the same pitch as another by ear, by judging when
the two pitches are nearly the same. With greater precision, an in-
strument can be tuned to the same pitch as another by slowing the
beats between the two simultaneous instrumental sounds.

But is pitch just periodicity, harmonicity, or the lack of beats? It
is important to note that pitch is a perceptual measure, like loudness
and some other terms we will use in this book. A machine that de-
tects pitch would have to match human judgments of pitch. Just
making a periodicity detector or a harmonicity detector would get
us close, but it would not be enough because there are ambiguous
cases where humans would assign a pitch and the machine would
not. In this chapter we will look at various quantitative aspects of
pitch.

> Pitch and Brightness

In thinking about and experimenting with the pitch of musical
tones, we must distinguish the sense of pitch from a sense of bright-
ness or dullness. A sound is bright when its spectrum has many
high-frequency partials. Musical tones ordinarily have no partials
below their pitch frequency. Hence, tones of high pitch tend to be
brighter than tones of low pitch.

Pitch depends on periodicity. Brightness or dullness depends on
the distribution of total power between high and low frequencies.
At the same pitch, the vowel /i/ (as in “beet”) is brighter than the
vowel /u/ (as in “boot”). At the same pitch the fraction of high-
frequency power is greater in the spectrum of /i/ than in the spec-
trum of /u/. As another example, the sound of a trombone is brighter
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Figure 5.1 The upper tone burst would likely not produce a sensation of pitch, whereas the lower
one would.

than the sound of a French horn, because the French horn is played
facing away from the listener and the player places his hand in the
bell.

A short click made up of low frequencies only sounds dull; a short
click made up of high frequencies only sounds bright. Such a differ-
ence in brightness may or may not be associated with a difference
in pitch. The waveforms in figure 5.1 are sine waves with a raised
cosine envelope. The wave at the top is composed of four cycles of
a sine wave. It sounds like a click, bright or dull depending on the
frequency of the sine wave. It does not give any impression of a mu-

- sical tone with a pitch. The waveform shown at the bottom has 25
cycles rather than 4. It gives a clear sensation of pitch, though there
may also be a little sensation of click. If the number of cycles is made
large enough, the “clicky” sensation disappears completely.

As the number of cycles in such a tone burst is increased from
four, we begin to experience a sensation of pitch as well as a clicky
sensation. Above some tens of cycles the clickiness fades away, and
we have a sensation of pitch without click. The number of cycles
necessary to give a pure pitch without a click increases somewhat
with the frequency of the sine wave, but it lies in the range of tens
of cycles. We will return to this sort of tone-burst waveform later.

Periodic waves are essential to the sensation of pitch. But we
should keep in mind that a periodic sound wave can have a clear pitch
only if it has a sufficient duration measured in cycles or periods.

5.3 Pitch and Partials
Musical tones have a number of harmonic partials whose frequen-
cies are integer multiples of a fundamental frequency or pitch fre-
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quency, the frequency of a sine wave that matches the tone in pitch.
The pitch frequency, the fundamental frequency (or, more com-
monly, fundamental), need not be present in the musical tone. In
-1924, Harvey Fletcher of Bell Telephone Laboratories observed that
for a sound with harmonic partials to be heard as a musical tone,
its spectrum must include three successive harmonics of a common
frequency. The pitch is given by that common frequency, whether
or not it is present in the musical tone.

Orchestra chimes provide a striking example of a musical tone
whose pitch frequency is entirely absent from the spectrum. The
fourth, fifth, and sixth partials of the flexural mode have frequencies
that are approximately the second, third, and fourth harmonics of a
tone that just isn’t there but is heard as the pitch frequency of the
chime.

In the nineteenth century Helmholtz and his followers believed,
erroneously, that the musical pitch of a sound is dependent on the
actual presence in the sound wave of a sinusoidal component or
partial of the pitch frequency. This misled Fletcher in the first of two
papers he published in 1924 in The Physical Review. These papers
recount experiments in listening to a number of instrumental sounds
from which the fundamental or pitch frequency had been filtered
out by a high-pass filter. Fletcher found that filtering out the funda-
mental, or even the fundamental and several successive low har-
monics, did not change the pitch of the sound. Indeed, the identities
of some sounds weren’t much changed by the omission of lower har-
monics. Instruments could still be easily recognized.

This is in accord with everyday experience. We hear the “right”
pitches when we listen to a little radio that has a tiny speaker, which
for low pitches puts out negligible power at the pitch frequency even
when the pitch frequency is present in the original waveform. The
telephone system rests on a frequency response that is not sufficient
to carry the fundamental frequency of the lowest male voices, but
we still hear voices as basically normal over the telephone. The most
plausible and the true conclusion is that eliminating energy at the
pitch frequency, and even at several low harmonics of the pitch fre-
quency, doesn’t necessarily alter our sensation of pitch.

In his first paper Fletcher proposed that the missing fundamental
was re-created by nonlinearities in the mechanism of the ear. He
soon abandoned this false conclusion. In the second paper he de-
scribed experiments in synthesizing musical tones. It was these ex-
periments that led to the assertion stated above, that a tone must
include three successive harmonic partials in order to be heard as a
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musical tone, a tone that has the pitch of the fundamental, whether
or not the fundamental is present.

In 1972, Terhardt published a theory of pitch perception, and later
worked with others to define a computer algorithm that was capable
of matching human pitch judgments on a number of sounds,
including speech, bells, and spectra containing only octave partials.
He defined a virtual pitch characterized by the presence of harmon-
ics or near-harmonics, and a spectral pitch corresponding to individ-
ual audible pure-tone components. He stated that most pitches
heard in normal sounds are virtual pitches, and this is true whether
the fundamental is present in the spectrum or not. His algorithm
calls for spectrum analysis using the Fourier transform, followed by
the identification of important audible sinusoidal components,
weighting the components, and allowing for masking effects (some
components may cover up others nearby). The weighted sinusoids
are then used to form many candidate virtual pitches that are the
common divisors, or subharmonics, of the important component fre-
quencies. These subharmonics are then combined and inspected to
determine the most likely perceived pitch, and a measure of the sali-
ency (how pitched it will sound, and how likely it is to be selected
as the pitch) of that pitch is determined.

The mechanism of human pitch perception is different at low
pitches and at high pitches. Fletcher’s observations on pitch do not
apply at very low frequencies, nor at frequencies well above
1000 Hz. Terhardt defines the crossover from virtual to spectral pitch
to be at about 800 Hz, but his method depends on the selection of
clear sinusoidal components in the spectrum. At very low frequen-
cies we may hear successive features of a waveform, so that it is not
heard as having just one pitch. For frequencies well above 1000 Hz
the pitch frequency is heard only when the fundamental is actually
present. Fletcher proposed that at high frequencies the pitch is given
by the position of excitation along the cochlea; and at low frequen-
cies by a time mechanism.

We should note that we do not sense any discontinuity or abrupt
difference in sensation as we play notes from the lowest to the high-
est musical pitches. For periodic musical sounds, the two mecha-
nisms overlap in frequency range. To investigate them we must tease
them out with ingenious experiments.

One interesting experiment is to add successive equal-amplitude
harmonics (integer multiples of a fundamental frequency), one by
one, to a sinusoidal tone of some fundamental pitch frequency. It is
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l_‘Figure 5.2 If we add successive harmonics to the fundamental frequency of a low-pitched sound,
- the sense of pitch grows stronger. However, a high-frequency component is also heard,
associated with the wiggles between the peaks.

interesting to do this at frequencies of 55 and 440 Hz. One thing that
we hear is a gradual reinforcement of the pitch frequency. But, in
addition to the constant, low-pitch frequency, we get a sense of a
higher frequency. This is most apparent in the 55 Hz tone.

Figure 5.2 shows the overall waveform of 10 successive harmonic
cosine waves of equal amplitude. The big — to + excursion of every
cycle accounts for a strong sensation of pitch at the fundamental
frequency. But the strong wiggles between the peaks tend to create
a sensation of a high pitch. It is as if we heard the shape of the wave-
form—a strong, low-pitched sound at the fundamental, and a
weaker, high-pitched sound corresponding to the wiggles.

That seems to be how we hear sounds when the pitch is low
enough. Somehow, the ear follows excursions of sound pressure. In
some sense, it counts out the pitch at low frequencies.

We can reduce or get rid of the sensations of frequencies higher
than the pitch frequency by choosing the relative amplitudes of the
harmonics in a different way. Figure 5.3b shows the waveform for
12 sinusoids with relative amplitudes 1.2, 1.1, 1.0, 0.9, and so on.
Figure 5.3a shows the waveform for six successive harmonics with
relative amplitudes 1.2, 1.0, 0.8, 0.6, 0.4, and 0.2. The wiggles be-
tween the peaks are quite small in figure 5.3b, and moderate in figure
5.3a. The waveform of figure 5.3¢ contains only'harmonics 7-12,
with amplitudes 0.4, 0.8, 1.2, 1.2, 0.8, 0.4. We see that this last wave-
form has an envelope that goes periodically from great to small with
the same periodicity as the other waveforms, .

Suppose that at frequencies around 55 Hz and around 440 Hz we
listen to sequences of three waveforms, the 12-partial waveform of
figure 5.3a, the 6-partial waveform of figure 5.3b, and the waveform
of figure 5.3c, which consists of only 5 high partials.
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The 12-partial tone includes frequencies from 1 through 12 times
the pitch frequency. The 6-partial waveform includes frequencies
from 1 to 6 times the pitch frequency. The third waveform is cen-
tered around a frequency 9.5 times the pitch frequency, and does
not include the pitch frequency itself or any of its nearby harmonics.

What about the perceived pitches of these waveforms near 55 Hz
and near 440 Hz? We could explore this question by playing a little
tune with the three waveforms. Around 55 Hz we will hear the same
tune for all three waveforms, with slightly different timbres. Wave-
form (c) has a somewhat “sharper” or more raucous timbre than the
other two. Around 440 Hz we hear the same tune with waveforms
(a) and (b). But with the third waveform we hear bright, faint sounds
rather than the “correct” pitches that we get with (a) and (b).

Around 55 Hz the ear can “look at” the first 12 harmonics of the
pitch frequency, or at the first 6 harmonics of the pitch frequency,
or at harmonics 7 through 12 of the pitch frequency, and see a repeti-
tion rate equal to the pitch frequency. Around 440 Hz the ear can
get the “right” pitch from the first 12 or 6 harmonics, but it can’t get
the “right” pitch from harmonics 7 through 12 of the pitch fre-
quency. The time resolution of the ear isn’t good enough to follow
the envelope of waveform (c). Instead, we get a sound based on the
frequencies of all the wiggles, small or large.

Experiments of this sort point strongly to what Licklider (1959)
called a “duplex theory of pitch.” Experiments supporting two pitch
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mechanisms have been pursued by Houtsma and Smurzinski (1990).
These experiments point strongly to a pitch sensation based on
waveform or periodicity for lower frequencies, and to some other
mechanism for pitch at higher frequencies.

For waveforms such as those of musical instruments, and for
waveforms such as those of figure 5.3, the envelope of the sound
wave has the same frequency as the pitch frequency. We need some
other sort of waveform to help cast more light on the question of
pitch perception.

~ Experiments with Tone Bursts

Figure 5.4

Figure 5.4 shows patterns of tone bursts that are reminiscent of the
waveforms of figure 5.1. These tone bursts are sine waves with a
raised cosine envelope. In (a) all tone bursts have the same phase, and
the fundamental frequency is given by the frequency of occurrence
of tone bursts. In (b) every fourth tone burst is the negative of the
other three. The four tone bursts constitute one period of the wave-
form, and the fundamental frequency is one-fourth of the tone-burst
rate, that is, one-fourth of the fundamental frequency of waveform
(a). This is exactly the same fundamental frequency as waveform (c).
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Three tone-burst sequences. Top: all tone bursts are the same. Center: every fourth tone
burst is inverted. Bottom: one toneburst for each four of (a). At low rates the pitches of (a)
and (b) are the same, and c) gives a pitch two octaves lower. At high rates (a) has a pitch
twao octaves above those of (b) and (c).




John Pierce 64

Indeed, the amplitude spectrum of (b) is the same as that of (c), but
the relative phases of the sinusoidal components are different.

In using such waveforms to investigate pitch, it seems desirable
to choose a number of cycles in the tone burst such that an individ-
ual tone burst gives no sensation of pitch. Suppose we choose to
make the frequency of the sine wave of a tone burst 4000 Hz. By
choosing a tone-burst rate for (a) of five tone bursts per second, we
can easily hear successive tone bursts. We find that if the tone bursts
are 64 cycles long, they give a strong sensation of pitch with no
clickiness. However, tone bursts four cycles long give no sensation
of pitch; they are strictly bright clicks.

In further experiments we can use 4000 Hz tone bursts that are
four cycles long. At sufficiently high tone-burst rates we hear tones
whose pitch increases with tone-burst rate. What are the relative
pitches of the tone-burst patterns (a), (b), and (c)?

Up to around 300 tone bursts per second, (a) and (b) have the same
pitch, which is two octaves above the pitch of (c). At low tone-burst
rates the auditory system seems to follow the envelope of the wave-
form, and we can hear successive tone bursts rise and fall in ampli-
tude. At low rates the auditory system seems to forget all about the
preceding tone burst by the time the next one comes along.

At high tone-burst rates, above 1600 tone bursts a second or more,
(b) and (c) have the same pitch, which is two octaves below the pitch
of (a). The ear cannot distinguish the separate tone bursts in (a) and
(b), and must rely on some other criterion or mechanism in judging
pitch. Position of vibration along the basilar membrane is a plausible
criterion for judging the pitch of high-frequency sounds.

The transition between pitch mechanisms is not abrupt. Up to
around 300 tone bursts a second, waveform (a) sounds exactly like
waveform (b), and both have a pitch two octaves above that of wave-
form (c). Above 1600 tone bursts a second, waveform (b) sounds ex-
actly like waveform (c), and waveform (a) has a pitch two octaves
higher than (b) or (c). For intermediate rates, waveform (b) gives a
sense of two pitches, that of (a) and that of (c). At 640 tone bursts
per second, waveform (b) sounds like a reasonably equal mix of the
sounds of (a) and (c).

This seems to be conclusive evidence that there are two different
mechanisms of pitch perception, a sort of counting mechanism valid
at lower frequencies and another mechanism that takes over when
the ear cannot “count” peaks in the time envelope of the exciting
signal. Plausibly, this high-frequency pitch mechanism relies on the
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amplitude of excitation along the basilar membrane. The mecha-

nisms appear to be about equally effective at a frequency around

640 Hz. This, which basically agrees with the work of Fletcher, Ter-

hardt, and Licklider, is our overall conclusion about the pitch of pe-
riodic waveforms.

- 0dd Harmonics Only
c Most musical instruments have spectra in which there are both even
and odd harmonics. For sounds of low or moderate frequencies, the
pitch of such tones is the fundamental frequency, even when there
is no component of this frequency in the spectrum.

In the tone of a clarinet, even harmonics are much weaker than
odd harmonics. Odd harmonics predominate in the spectra of closed
organ pipes.

Digital sound generation enables us to create and explore various
types of spectra. For example, we can synthesize sounds with no
even harmonics. Will we hear the pitch frequency in the absence of
the fundamental frequency? No! Even when the fundamental fre-
quency is present, for sufficiently low pitch frequencies the pitch
heard will be higher than the repetition frequency.

Figure 5.5 shows how to demonstrate this. We could first play a
tone as shown in figure 5.5 a) with 12 successive harmonics (starting
at the first harmonic), with amplitude 1.0 for the first harmonic or
pitch frequency, and amplitude 0.7 for each of the 11 higher even
and odd harmonics. Then we could play a tone, as shown in figure
5.5 (b), of the same pitch frequency in which each of six successive

Spectrum,

all harmonics Time waveform
Frequency

Spectrum, Time waveform

odd harmonics
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' Figure 5.5 Two tones with a similar spectral range, power, and brightness. For a pitch frequency of
880 ar 440 Hz the pitches heard are the same. For a pitch frequency of 55 or 110 Hz, the
odd harmanic tone has a pitch greater than that of the upper tone.

Frequency
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odd harmonics has amplitude 1.0. The two tones have the same first
harmonic, the pitch frequency or fundamental. The widths of the
spectra of the tones are similar, so the brightnesses of the tones are
similar. The total powers are nearly the same (each harmonic contri-
butes a power proportional to the square of its amplitude).

Suppose the tones are played with pitch frequencies of 880, 440,
220, 110, and 55 Hz. At 880 and 440 Hz the two tones are heard as
having the same pitch. At 110 and 55 Hz the odd harmonic tone is
heard as having a higher pitch than the successive harmonic tone.
When the pitch frequency is low, the loudness of the fundamental
and other low harmonics is very much less than that of the higher
harmonics. At low enough frequencies the fundamental and some
other low harmonics cannot be heard. In the case of odd harmonics
only, the frequency separation between successive odd harmonics
is twice the pitch frequency. At low pitch frequencies the ear makes
a pitch judgment that reflects the distance between the higher
harmonics.

5.6 Chimes and Bells

The orchestra chime consists of a number of metal tubes that vibrate
transversely after they are struck. The partials of a transversely vi-
brating tube are not harmonic. But, as we have noted earlier, the
fourth, fifth, and sixth partials have frequencies very close to a har-
monic series. That series has a pitch frequency that is 4.5 times the
frequency of the lowest frequency of vibration, and the seventh par-
tial is close to being the seventh harmonic of this absent frequency.
We hear a pitch of this absent pitch frequency based on the presence
of close approximations to its second, third, fourth, and seventh
harmonics.

Bells in a carillon are used to play tunes. Around the year 1644,
the brothers Frans and Pieter Hemony established the classical tun-
ing of carillon bells that gives partials with the frequency ratios
shown in table 5.1. We can observe that the significant partials are
separated by musical intervals, and that the Prime, Third, and Fifth
form a minor triad. With the exception of the frequencies of the
Third, all the partials listed are harmonics of the Hum tone, which
is an octave below the Prime.

If the Hemony third were a major third rather than a minor third
above the prime, then the prime, third, and fifth would form a major
triad, and all listed partials would be harmonics of a tone one octave
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Table 5.1 The frequencies of a Hemony bell sound

PARTIAL RELATION TO f,, THE PERCEIVED PITCH
Hum tone 0.5 f,, one octave down

Prime 1,

Third 1.2 f, (a minor third up)

Fifth 1.5 f, (afifth up)

Octave 2if

Upper third 25 f,

Upper fifth 8f,

below the hum tone. Might this not result in more pleasing carillon
sounds? In 1987 a collaborative effort between the Dutch Institute
for Perception in Eindhoven and the Royal Eijbouts Bell Foundry in
Asten resulted in the casting of a four-octave transportable carillon
of major-third bells. The major-third bell indeed sounds less disso-
nant than the traditional Hemony bell, and has been received with
a good deal of favor.

Pitch and Unusual Tones :
There has been a good deal of work relevant to pitch that makes use
of computer-generated sounds. In 1964, Roger Shepard published
material on what have come to be called Shepard tones. These tones
consist of a number of sinusoidal components an octave apart, with
a fixed envelope that goes to zero at low and high frequencies. Figure
5.6 shows the spectral characteristics of Shepard tones.

When we raise the frequencies of the sinusoidal components a
semitone, we get the sense of an increase in pitch. This sense of
change persists, semitone by semitone, but when we’ve reached 12
semitones total, we are back where we started. The pitch appears to
increase endlessly.

What happens when we raise or lower the pitch by six semitones,
half an octave? Some hear the pitch as going up; some, as going
down. Raising or lowering the pitch by six semitones gives us ex-
actly the same waveform.

We may note that Shepard tones are somewhat different from mu-
sical tones. Though they have many partials, they omit partials other
than those an octave apart. Also, there is no lowest partial. As we
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Figure 5.6 Frequency components of a Shepard tone. The envelope goes from left to right, from an
inaudible level to an audible level and back down to an inaudible level. A tone has partials
separated by an octave. (Modified from Shepard, 1964. Reprinted with permission, ©
1964 Acoustical Society of America.)

continually increase the frequency of the octave partials in order to
give a higher pitch, a partial will eventually attain audible ampli-
tude, rise in amplitude, fall in amplitude, and sink into inaudibility.
There are always more low and high partials available, but they're
inaudible due to the imposed spectral envelope and the threshold
of hearing.

Successive Shepard tones need not be separated by a semitone.
Shepard tones separated by a tenth of an octave can be synthesized
as nine equal-amplitude octave partials of a fundamental frequency
A0 (27.5 Hz) and of successive fundamentals 0.1 octave, 0.2 octave,
0.3 octave, and so on, to 0.9 octave, then back to A0, and on up
again. The sensitivity of human hearing provides the required “at-
tenuation” at low and high frequencies.

Let us consider the pitch of another sort of computer-generated
tone. What happens to the pitch of a tone when we double the fre-
quencies of all its frequency components? Jean-Claude Risset has
produced tones for which the pitch decreases a little when we
double the frequencies of all partials. The tones are made up of suc-
cessive partials a little more than an octave apart. That is, the ratio
of the frequencies of two successive partials is a constant slightly
greater than 2. When we abruptly double the frequencies of all par-
tials, the ear hears each frequency component as “replaced” by a
partial of slightly lower frequency. The lowest frequency vanishes,
and a partial appears with a frequency slightly more than an octave
above the previously highest partial. The ear can disregard this dis-
appearance and appearance of partials.
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To illustrate this, we could synthesize a tone with nine partials,
each successive partial having a frequency 2.1 times that of the pre-
ceding partial. When the frequency is shifted from a “fundamental”
of 27.5 Hz to a “fundamental” of 55 Hz, the perceived pitch oblig-
ingly falls a little.

Risset’s tones started with a partial at some plausible and highly
audible pitch frequency. The effect isn’t as strong or foolproof in this
more musical form. Risset also produced tones of ambiguous pitch,
in which the pitch heard is dependent on context.

Concluding Remarks

Our sense of pitch is essential in almost all music. Pitch frequency
can be related to the fundamental frequency of the sound wave, the
frequency of the lowest harmonic or fundamental, whether or not a
component of that frequency is actually present in a sound wave.
We sense changes in pitch as similar both in notes of low pitch fre-
quency and in notes of high pitch frequency.

There are two mechanisms of pitch perception. One is a sort of
counting out of the cycles of a periodic musical tone. This is the
dominant mechanism for pitch frequencies below a few hundred Hz.
The other mechanism must be based on the place of excitation along
the basilar membrane. This mechanism is dominant for pitch fre-
quencies above perhaps 1600 Hz. In between these ranges of com-
plete dominance, both mechanisms operate. For musical sounds, for
which the fluctuation of the envelope is equal to the fundamental
frequency (which may be present or absent), the mechanisms agree
in their estimate of pitch. For tones of low pitch that have odd har-
monics only, the pitch may be different from the frequency of the
fundamental.

By using computers, tones with peculiar pitch properties have
been devised. These peculiar properties do not occur in the tones
produced by traditional musical instruments. They are useful exper-
imentally, and may be useful musically.

In taking the work of Fletcher into account, it is important to note that he does not discuss
his work on pitch in his book.

Fletcher, H. (1953). Speech and Hearing in Communication. New York: D. Van Nostrand.
Republished in 1995 by the Acoustical Society of America, New York. The republished
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version, edited by Jont B. Allen, includes a complete bibliography of Fletcher's publi-
cations, through which the 1924 Physical Review papers and other papers that discuss
pitch can be found.

It appears that Schouten was not aware of Fletcher’s earlier work, nor were many of his
readers. Schouten is responsible for the term virtual pitch, used to describe pitch in
the absence of the fundamental, as contrasted to the pitch of tones with a fundamental.
Of course, no one can separate pitch and virtual pitch while listening to music.

Schouten, J. F., Ritsma, R. J., and B. L. Cardozo. (1962). “Pitch of the residue.” Journal of
the Acoustical Society of America, 134, 1418-1424.

Terhardt’s pitch model seems to work well for most signals encountered in music, but does
not exactly match human responses on particular types of specially designed tones,
such as Risset’s tones and the pulse trains described in this chapter. Here are the funda- '
mental Terhardt references:

Terhardt, E. (1972). “Perception of the Pitch of Complex Tones.” Acustica, 26, 173-199.

Terhardt, E., G. Stoll, and M. Seewann. (1982). “Algorithm for Extraction of Pitch and Pitch
Salience from Complex Tonal Signals.” Journal of the Acoustical Society of America,
71, 679-688.

Risset’s paradoxical sounds:

Risset, J. C. (1969). “Pitch Control and Pitch Paradoxes Demonstrated with Computer-
Synthesized Sounds,” Journal of the Acoustical Society of America, 46, 88. (Abstract).

Mathews, M. V., and J. R. Pierce, eds. (1989). Current Directions in Computer Music Re-
search. Cambridge, Mass.: MIT Press. Compact disc sound examples for the book are
available from the publisher. Chapter 11, “Paradoxical Sounds,” by Jean-Claude Risset,
is particularly appropriate. Unfortunately, chapter 14, “Residues and Summation
Tones—What Do We Hear?,” by John Pierce, is erroneous, as are the sound examples.

Other references on pitch perception:

Greenberg, S., J. T. Marsh, W. S. Brown and J. C. Smith. (1987). “Neural Temporal Coding
of Low Pitch. I. Human Frequency-Following Responses to Complex Tones.” Hearing
Research, 25, 91-114.

Houtsma, A. J. M., and Smurzynski, J. (1990). “Pitch Identification and Discrimination for
Complex Tones with Many Harmonics,” Journal of the Acoustical Society of America,
87, 304-310.

Licklider, J. C. R. (1959). “Three Auditory Theories.” In S. Kogh, ed., Psychology: A Study
of the Science, vol. 1. New York: McGraw Hill.

Nordmark, J. O. (1968). “Mechanisms of Frequency Discrimination.” Journal of the Acousti-
cal Society of America, 44, 1533-1540.

Pierce, J. R. (1991). “Periodicity and Pitch Perception.” Journal of the Acoustical Society of
America, 90, 1889-1893.



at Is Loudness?

What does “loud” mean? Can you measure it with a meter? How
loud is “twice as loud”? In chapters 1 and 2 we considered how the
ear and the brain work. In chapter 5 we discussed some fundamen-
tals of pitch perception. Here we will concentrate not on the me-
chanics of how our sensors work but on how we eventually perceive
auditory phenomena. As with the chapter on pitch, we will not con-
sider physically measured things, such as intensity, but rather how
we perceive intensity as loudness.

- Equal Loudness Contours

Figure 6.1 shows an important, classical diagram known as the
Fletcher-Munson curves. We were first introduced to these curves,
which show equal loudness contours for sine wave sounds, in chap-
ter 4. Frequency in Hz is shown left to right, from 20 Hz at the left
to over 10,000 Hz at the right. Sounds of different frequencies whose
intensities lie along any one of these curves sound equally loud.
Along the ordinate (vertical axis) are the actual sound pressures (or
intensity) in decibels.

As you can see, some of the equal loudness curves go up and
down quite a lot. For example, in order for a soft sound at 50 Hz to
sound as loud as one at 2000 Hz, the 50 Hz sound has to be about
50 dB more intense than the 2000 Hz sound. That is an enormous
difference of 100,000 times in power.

What this tells us is that our auditory systems are much more sen-
sitive at 2000 Hz than at 50 Hz. You may have noticed that you can
barely hear the 60 Hz hum that is present in cheap audio equipment.
If the equipment produced the same intensity of “hum” at 2000 Hz,
it would drive you out of the room.

If you examine the curves of figure 6.1 a little more closely, you
can see that the auditory system is most sensitive at a frequency of
about 2000 Hz. Some of the curves show the maximum sensitivity
nearer to 3000 Hz. Musically, 2000 Hz is a fairly high pitch; most
singers cannot produce a pitch that high. But they might get up to
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Figure 6.1 Fletcher-Munson equal loudness contours show the intensity at which a sine wave must
be presented, as a function of frequency, in order to sound equally loud as sine waves at
other frequencies on the same curve.

1000 Hz, and really blast you. Moreover, musical tones of lower
pitch have harmonics in the range of 2000 Hz and above, and a part
of the loudness of musical tones is contributed by their harmonics.

At low frequencies below 100 Hz, the auditory system is not very
sensitive. And at high frequencies of 10,000 Hz and above, it also is
insensitive. How fast the sensitivity of the ear falls off at high fre-
quencies depends on how old you are. My hearing (at age 60) falls
off very rapidly around 10,000 Hz, whereas most young people can
hear sounds up to 15,000 to 20,000 Hz.

Musically, the most important frequencies lie between 100 and
5000 Hz. As discussed in chapter 5, musical tones with pitch fre-
quencies below 100 Hz are heard chiefly through their harmonics.
It’s amazing how little we lose by eliminating all frequencies below
100 Hz and above 5000 Hz. AM radio stations don’t broadcast above
5000 cycles. Small radio sets don’t produce much intensity at
100 Hz and below. Lower and higher frequencies do make a differ-
ence, however, that we can appreciate in good hi-fi systems.

There are a lot of curves in figure 6.1. What are the differences
between them? It’s the intensity of the sound. Consider the lowest
curve. For this curve, the intensity of sound at the auditory system’s
most sensitive frequency is 8 dB greater than the threshold of per-
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ception at that frequency. This bottom curve is close to the softest
sound that the average person can hear at most frequencies.

The number attached to a particular curve is its loudness level in
phons, defined by the shape of the curve itself. The intensities along
the curve, including the minimum intensity, have a common loud-
ness level, specified in the number of phons that labels the curve.
These curves are 10 dB apart. What do the decibels refer to? A
sound-level meter will read such intensities in SPL (sound pressure
level), which is a measure of sound intensity. Sound-level meters
are calibrated in SPLs.

If you read a number on a sound-level meter, for sine waves you
will get SPLs in decibels above the threshold of hearing. To get the
loudness level for a complicated sound such as speech, you must
find the loudness level in phons of a sine wave that sounds equal in
loudness to the sound you're trying to quantify.

The lower curves in figure 6.1 represent soft sounds. Normal
speech sounds are 70 to 80 dB above the levels of the lowest curve.
The ambient sound level in a good empty auditorium will be around
30 dB. It takes good sound insulation to get the ambient noise much
below 30 dB.

We must remember that the curves of figure 6.1 are for sine waves.
Speech and noise have many frequencies. For weak sounds, some
frequency components may lie below threshold, so that their power,
which is included in the SPL reading, may actually not contribute
to the audibility of the sound. In an extreme case, a 20 Hz sound
with a 30 dB SPL would be completely inaudible.

At the top of the set of curves, the sounds at 120 dB approach the
threshold of pain. That hurts, and is dangerous. If you are exposed
to levels like that for very long, you are apt to have damage to your
hearing—you’ll have what’s called a “threshold shift.” A little expo-
sure will result in temporary shift, and you can suffer permanent
damage through prolonged or repeated exposure. As a matter of fact,
sound levels above 100 dB should be experienced with caution, and
not for very long.

I once went to a Grateful Dead concert and sat behind the mixing
console. The Grateful Dead concerts (and many others) are very care-
fully controlled by the engineer doing the sound mixing. The musi-
cians don’t have anything to do with it during the concert. All the
lines from the pickups and microphones lead to the mixing console,
which is always at a given location, 80 or so feet from the two towers
of loudspeakers on the stage. The mixing console can adjust the
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levels of all the sounds of the instruments. I watched the sound-
level meter during part of the concert. It never went below 100 dB,
and it never went above 110 dB. Later, I asked why this was so. I was
told that if the level went below 100 dB, the audience got restless. If
it went above 110 dB, there was so much feedback to the stage that
the performers couldn’t play. I didn’t ask about hearing damage.

Returning to the curves of figure 6.1, we should note that for soft
sounds there is a great difference in the auditory system’s sensitivity
to different frequencies. The lower curves have a big dip in them.
For loud sounds, even for 90 phons, there is much less variation
with frequency. There is a moderate amount of variation for sounds
of intermediate intensities.

Musically, this variation is important. For one thing, this tells us
that if we want a musical instrument to be heard easily, its frequen-

- cies should lie between, say, 500 Hz and a few thousand Hz. If you
have an instrument that produces low frequencies only, it can’t be
perceived as loud. If you have a high-frequency instrument, it won’t
be quite as loud as a midfrequency instrument. To get a very loud
sound you need a lot of energy in the frequency range from 500 to a
few thousand Hz.

Another conclusion is that when your are playing fortissimo, low
frequencies contribute relatively more than in a soft passage. In con-
nection with the things I have covered in this chapter, and in con-
nection with other matters concerning the hearing of sound, I
advocate the “I'm from Missouri” approach. You shouldn’t believe
things unless you can hear them. You should listen to sounds and
decide whether or not to believe what you are told. Data are average
data, and you weren’t included in the averaging. The course I advo-
cate is best carried out by listening to synthesized sounds.

6.2 Synthesizing and Listening to Examples :
There are various ways of producing computer-generated sounds,
but most are related by the ability to manipulate sine waves in fre-
quency, phase, and amplitude. Some systems allow for control of
noise and other characteristics. With computer-generated sounds we
can try to confirm what has been said about various features of the
Fletcher-Munson (equal loudness) curves. One can adjust the rela-
tive intensities of sine tones at 50 Hz and at 2000 Hz until they seem
to sound equally loud, and compare the result with the published
curves. In such a demonstration it is desirable to be able to see the
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waveform and a spectrum display, as well as to hear the sounds, so
that you’re sure about the sound to which you’re listening.

In a lecture demonstration I use when teaching the psychoacous-
tics course, sounds are played at various relative levels in decibels
SPL. The level of the sinusoidal sound in the room is adjusted by
using a sound-level meter.

The class votes as to which frequency sounds louder. As the level
of the 50 Hz sound is increased in steps, from a level equal to that
of the 2000 Hz sound to a higher and higher level, the vote finally
changes from the 2000 Hz tone sounding louder to the 50 Hz tone
sounding louder. The procedure is tried with softer sounds, and can
be used with other frequencies as well. The results come out strik-
ingly close to those shown in figure 6.1. But they are not as precise,
for the levels are adjusted in 10 dB steps.

The large change in relative intensities is sensible for a demonstra-
tion in a room in which the relative intensities at various locations
may be different for different frequencies. The data for the curves of
figure 6.1 were of course taken with earphones.

Another important demonstration is “How much is a decibel?” I
do this at 440 Hz, the A above middle C. This frequency is chosen
to avoid changes in intensity that can be caused by varying head
position in a real room with resonances (remember that the wave-
length of 440 Hz is about 2.6 feet). Successive sounds are played
1 dB apart; the difference in intensity is difficult to hear. Musically,
a 1 dB difference in intensity doesn’t produce any impact. A 6 dB
difference is easy to hear, but not very impressive as a contrast in
music. Six dB is a factor of 4 in the intensity or power of a sound,
or a factor of 2 in pressure. Twenty dB is a factor of 100 in intensity
or 10 in pressure—a pretty big change. Forty dB is a really big
change, from barely audible in a “noisy” room to a good loud sound.
It is about the largest range of musically significant sound in ordi-
nary circumstances. In a quiet concert hall you can’t do much better
than 60 dB.

Musically, if you want to make a contrast, you have to do more
than just change the intensity of the sound. You have to change the
complexity of the sound, and perhaps the harmony. A composer
must do more than just change intensity in going from soothing to
startling.

Again we must remember that figure 6.1 is for sine waves. Most
demonstrations of sounds are for sine waves. The voice, music, and
all natural sounds are not sine waves; they are made up of many
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partials or frequency components, and often of nearly harmonic par-
tials. We must take into account the data we get with sine waves,
but we must not let ourselves be misled by them. We have consid-
ered the perception of equal loudness, and the perception of more
or less loudness. But does it make sense to call one sound twice as
loud as another, or half as loud as another, or ten or a hundred times
as loud as another?

6.3 What’s Twice as Loud?
In order to answer this question, you have to be willing to make a
different kind of judgment. This new kind of judgment is harder to
make, but if enough people agree, it will be one we can rely on. So
far we have talked about listening to two sounds and saying which
one is louder, or we have adjusted the level of one of two sounds
until the sounds are equally loud.

We can present a sound, and then follow it with another sound
that is more intense than the first by some number of decibels. Then
we can ask, “Is the second sound more or less than twice as loud as
the first?” This has been done both in classroom demonstrations and
in controlled research labs. The judgments by vote showed that most
people heard a 5 dB more intense sound as less than twice as loud,
and most people said a 10 dB more intense sound was at least twice
as loud. Thus, somewhere between 5 and 10 dB difference in inten-
sity is twice as loud.

What do researchers find when they carefully run such an experi-
ment with earphones, and repeat it many times with many people?
What they find for 1000 Hz sine tones is shown in figure 6.2. At
moderate-to-high levels a difference in intensity of around 10 dB
doubles the loudness measured in sones (the sone is defined as a
perceptual comparative loudness relative to a sine wave at 1000 Hz,
40 dB SPL). But at lower intensities, and especially near the thresh-
old of hearing, the loudness in sones increases more rapidly with
intensity in decibels. That makes sense, because if you compare a
sound you can barely hear with a sound just a few decibels more
intense, the latter seems bound to sound much louder.

Figure 6.2 holds only for the frequency 1000 Hz. Curves have been
measured and plotted for several frequencies across the audio range
but all curves look about the same in shape except for the one at
100 Hz. At high enough levels the curves have a slope of about
10 dB for doubling the loudness. Fletcher, Stevens, and others have



6. What Is Loudness? 77

5 100

Loudness (s
=

40 60 80 100 120
Loudness (phons)

Figure 6.2 Loudness in sones versus loudness level in phons at 1000 Hz.

proposed that in the normal-to-high range, the loudness varies as the
third root of the intensity; that would give about 9.4 dB for doubling
the loudness, and 10 dB is close enough to this level to be a good
rule of thumb. The region of loudness for which this linear variation
of loudness versus intensity holds is the region that is of interest in
music. In this region we can get, for sine waves, the loudness versus
intensity level at any frequency from figure 6.1, the equal-loudness
contour.

We have now done two things. We have investigated contours of
equal loudness, with each contour labeled in phons. We also have
made a scale of relative loudnesses in sones. The equal loudness con-
tours involve only quantities that you can read on a meter, once you
have made an adjustment for equal loudness. The relative loudness
in sones cannot be read on a meter. It depends on consistent human
judgment of what intensity ratio doubles the perceived loudness.

Complex Sounds

What about more complex sounds? We can adjust the level of a sine
wave of some frequency so that the sine wave sounds as loud as
some other sound. The loudnesses will not necessarily seem the
same if we raise or lower the levels of the two sounds by the same
number of decibels. Fletcher’s experimental conclusion was that
putting the same sound in both ears makes it sound twice as loud
as if it were heard monaurally. Experiments also indicate that the
loudnesses of two sounds in the same ear add, but only if the sounds
are separated enough in frequency so that one doesn’t interact with
or mask the other.
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Some other interesting observations on loudness of spectra, which
you could investigate with computer music synthesis software, in-
clude the following:

Take one sound that is a single sine wave of, say, 1000 Hz. Let an-
other sound be composed of six sine waves, each with one-sixth the
power of that single sine wave. Let the frequencies of the sine waves
in the second sound be 500, 1000, 1500, 2000, 2500, and 3000 Hz.
The six harmonically related sine waves will sound a good deal
louder than the single sine wave of the same total power. See if this
is true at many amplitude levels.

Compare the loudness of the six harmonic waves above with a sound
composed of six inharmonic frequencies (e.g., 500, 1100, 1773, 2173,
2717, 3141 Hz). Which do you think will be louder?

Maoore, B. C. . (1989). An Introduction to the Psychology of Hearing. Third edition. London:
Academic Press.



