4 Sound Waves and Sine Waves
John Pierce

4.1 Sound and Sine Waves
We are immersed in an ocean of air. Physical disturbances—snap-
ping the fingers, speaking, singing, plucking a string, or blowing a
horn—set up a vibration in the air around the source of sound. A

sound wave travels outward from the source as a spherical wave-
front. It is a longitudinal wave in which the pulsating motion of the
air is in the direction the wave travels. In contrast, waves in a
stretched string are transverse waves, for the motion of the string is
at right angles to the direction in which the wave travels.

How fast does a sound wave travel? If the air temperature is 20
degrees Celsius, a sound wave travels at a velocity of 344 meters
(1128 feet) a second—a little faster at higher temperatures and a
little slower at lower temperatures. Sound travels in helium almost
three times as fast as in air, and longitudinal sound waves can travel
through metals and other solids far faster.

The sound waves that travel through the air cause components of

“our ears to vibrate in a manner similar to those of the sound source.
What we hear grows weaker with distance from the source, because
the area of the spherical wavefront increases as the square of the
distance from the source, and the power of the source wave is spread
over that increasing surface. What actually reaches our ears is com-
plicated by reflections from the ground and other objects. In a room,
much of the sound we hear comes to our ears after being reflected
from floor, walls, and ceiling.

The vibrations of musical sound are complicated, and the charm
of musical sounds lies in their complexity. But most old-time dis-
cussions of musical sounds and most old-time experiments with
sound waves and with hearing were carried out with a rare and sim-
ple sort of sound wave, a sinusoidal wave. How can such discus-
sions and experiments have any relevance to the complicated
sounds of music? Chiefly, because the phenomenon of sound propa-
gation in air at intensities encountered in musical performance is
a linear phenomenon. The undisturbed vibrations of strings or of
columns of air are at least approximately linear. Even the vibrations
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along the cochlea of the ear are close enough to linear for linear
systems ideas to be an appropriate guide to thought. What are the
characteristics of linear systems? How can sine waves be useful
in connection with the complicated sounds of music?

4.2 Linear Systems

Figure 4.1

Sine waves are important both mathematically and practically in de-
scribing the behavior of linear systems.

What is a linear system? The amplifier depicted in figure 4.1 illus-
trates a linear system. Suppose that an input signal or waveform In1
produces an output waveform Out1, and that an input waveform In2
produces an output waveform Out2. If the amplifier is linear, the
combined input waveform In1+In2 will produce an output wave-
form Out1+Out2. The output of a linear amplifier (or of any linear
system or phenomenon) for a sum of inputs is the sum of the outputs
produced by the inputs separately.

It may be easier to understand if we say that an amplifier is linear
if it doesn’t produce any distortion. In some real amplifiers there is
distortion. We hear things in the output that were not present in the
input. Mathematically, a linear system is a system whose behavior
is described by a linear differential equation or by a linear partial
differential equation. In such an equation the sum of constants times
partial derivatives with respect to time and space is equal to 0, or to
an input driving function. Some linear, or approximately linear, sys-
tems are the following:

A sound wave in air (linear for musical intensities)

A vibrating string (linear for small amplitudes)

A vibrating chime or bell (ordinarily linear)

The bones of the middle ear (linear for small changes in level)
Vibrations along the basilar membrane of the cochlea (with some
assumptions).
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A system is linear if the output due to two overlapping inputs is the sum of the outputs to
each input separately.
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Tam-tams, cymbals, and some other percussion instruments ex-
hibit a clearly nonlinear phenomenon: an upwelling of high frequen-
cies after striking. Smaller nonlinearities in nearly all musical
instruments are responsible for subtle but characteristic musical
qualities of the sounds produced. But the most obvious features of
the sounds of conventional instruments are consistent with an as-
sumption of linearity.

To the degree to which an instrument such as a piano, guitar, bell,
or gong is linear, the vibrations it produces can be represented as a
sum of slowly decaying sine waves that have different frequencies.
Each frequency is associated with a particular spatial distribution of
vibrations and has a particular rate of decay. The sound of the wave
generated by such a sum of vibrations at different frequencies consti-
tutes a musical tone.

The frequencies of free vibrations of a violin string or the air in a
horn predispose the forced (by bowing or blowing) vibrations to
have frequencies quite close to those of a free vibration. Skillful
bowing of a violin string can give harmonics, which are integer mul-
tiples of some fundamental frequency. A bugle can be blown so as
to produce a rather small number of musical tones, each near a fre-
quency of the free vibration of the air in the tube, again a series of
harmonics.

Because sine waves, and measurements based on sine waves, are
pervasive in musical lore, it is important at this point to become
well acquainted with a sine wave. Figure 4.2 shows a swinging pen-
dulum that traces out a portion of a sine wave on a moving strip of
paper. A true sine wave lasts forever, with its past, present, and fu-
ture an endless repetition of identical periods or cycles of oscil-
lation. A sine wave can be characterized or described completely
by three numbers: the maximum amplitude (in centimeters, volts,
sound pressure, or some other unit of measurement), the frequency
in Hertz (Hz, cycles per second), and the phase, which specifies the
position when the sine wave reaches its peak amplitude. This is il-
lustrated in figure 4.3.

With respect to phase, we should note that the mathematical co-
sine function is at its peak when the phase is 0 degrees, 360 degrees,
720 degrees, and so on. The mathematical sine function reaches its
peak at 90 degrees, 450 degrees, and so on.
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Sine waves are described completely by their frequency (or period), amplitude, and phase.

The relative amplitudes of sine waves are often expressed in terms
of decibels (dB). If wave 1 has a peak amplitude of vibration of A1
and a reference wave or vibration has a peak amplitude of vibration
of A2, the relationship in decibels of vibration A1 to vibration A2 is
given by

20 log,, (A1/A2). (4.1)

A sound level in decibels should always be given as decibels
above some reference level. Reference level is often taken as a sound
power of a millionth of a millionth of a watt per square meter. A
person with acute hearing can hear a 3000 Hz sine wave at reference
level. Reference level is sometimes also taken as a sound pressure of
0.00005 newtons, which is almost exactly the same reference level
as that based on watts per square meter.

In many experiments with sound we listen to sounds of different
frequencies. It seems sensible to listen to sinusoidal sound waves in
an orderly fashion. We will use the diagram shown in figure 4.4 to
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are heard as equally loud.

Figure 4.4 The equal loudness curves link combinations of sound pressure level and frequency that

guide our listening. Here frequency in Hertz is plotted horizontally.
Nine vertical lines are shown, spaced one octave apart at frequencies
from 27.5 Hz (A0), the pitch frequency of the lowest key on the pi-
ano keyboard, to 7040 Hz (A8), above the topmost piano key.

The curves shown are equal loudness curves. Along a particular
Joudness curve the various combinations of frequency and level give
sounds that are judged to have the same loudness. The constant
loudness curves crowd together at low frequencies. At low frequen-
cies, a small change in amplitude results in a large change in loud-
ness. There is some crowding together at about 4000 Hz.

We can listen to tones at a chosen frequency given by one of the
vertical lines at six different amplitudes, each successively 10 dB
below the preceding amplitude. This tells us how a sinusoidal
sound of a given frequency sounds at six sound levels 10 dB apart.
Of course, the sine wave sounds fainter with each 10 dB decrease in
amplitude. What we hear depends on the initial sound level, and
that depends on the audio equipment and its loudness setting. But,

roughly, this is what we hear:

At 27.5 Hz, a weak sound that disappears after a few 10 dB falls

in level. The constant loudness curves are crowded together at this
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low frequency, and a few 10 dB decreases in amplitude render the
sound inaudible

At 110 Hz, a stronger sound that we hear at all successively lower
sound levels

At 440 Hz, the pitch to which an orchestra tunes, a still stronger
sound

At 1760 Hz, a still stronger sound

At 7040 Hz, a somewhat weaker sound. With increasing age people
tend to hear high-frequency sounds as very weak, or not to hear
them at all.

4.4 Sine Waves and Musical Sounds

One importance of sine waves is that for linear oscillating systems,
the overall vibration of a musical instrument can be regarded as the
sum of sinusoids of different frequencies..This is illustrated in figure
4.5, which shows several patterns of oscillation of a vibrating string.

In the vibration at the top, the deviation of the string from
straightness varies sinusoidally with distance along the string. The
center of the string vibrates up and down, with a sinusoidal dis-
placement as a function of time, and the oscillation falls smoothly
to 0 at the ends. At any instant the variation of displacement with

distance along the string is sinusoidal. We can think of the oscilla-
tion of the string as corresponding to a traveling sine wave of twice
the length of the string, reflected at the fixed ends of the string. We

Figure 4.5 Some modes of vibrations of a stretched string. Different modes have different numbers
of loops: from top to hottom, here, one, two, three. The frequencies of vibration are pro-
portional to the number of loops.
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can describe this pattern of oscillation as having one loop along the
string. Below we see patterns of vibration with two and three loops
along the string.

In agreement with the original observations of Pythagoras as inter-
preted in terms of frequency of vibration, the frequencies of the vari-
ous patterns of vibration are proportional to the number of loops
along the string. Thus, if f, is the frequency for vibration at the top
of figure 4.5, the frequencies of vibration shown lower are 2f, (two
loops) and 3f, (three loops). Other “modes” would have frequencies
of 4f, (four loops), 5f,, and so on.

Ordinarily, when we excite the string by plucking or striking, we
excite patterns of vibration at many different frequencies that are
integers (whole numbers) times the lowest frequency. In one period
of duration, 1/f,, the various other harmonic frequencies of oscilla-
tion, corresponding to two, three, four, five, and so on loops, will
complete two, three, four, five, and so on oscillations. After the pe-
riod 1/f,, the overall oscillation will repeat again, “endlessly” in an
ideal case of no decay in amplitude.

We have considered various aspects of sine waves that we hear.
Wavelength is an aspect of sinusoidal sound that is associated with
a sound wave traveling through air. The wavelength of a sinusoidal
sound is sound velocity divided by frequency. As noted in section
4.1, the velocity of sound in air is 344 meters/second (1128 feet/
second). In table 4.1, wavelength is tabulated for various frequencies
(and musical pitches). We see that in going from the lowest key on
the piano, A0 (frequency 27.5 Hz) to A7 (the highest A on the key-
board (frequency 3520 Hz), the wavelength goes from 41 feet (12.5
meters) to 0.32 foot (0.1 meter). Actual musical tones include har-

monics whose wavelengths are much shorter than that of the funda-

mental or pitch frequency.

For some musical instruments (including some organ pipes and
the clarinet), the sounds produced contain chiefly odd harmonics of
a fundamental frequency. This happens whenever one end of a tube
is closed and the other end is open. If f; is the fundamental fre-
quency of a closed organ pipe, the chief frequencies present are f,,
3f,, 5f,, 7f,, and so on.

We can represent the sustained sound of a musical instrument
by a sum of sine waves with many harmonic frequencies. But we
hear the sound as a single musical tone with a pitch that is given by
the pitch frequency, the frequency of which the frequencies of all
the partials are integer multiples. The pitch of a musical sound de-
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Table 4.1 Musical notes, frequencies, and wavelengths

NOTE NAME FREQUENCY (HZ) WAVELENGTH (FT.)

A0 27.5 4
Al 55
A2 110
A3 220
A4 440
A5 880
A6 1760
A7 3520

pends on the simple harmonic relation among the many frequencies
present. The musical quality of the overall sound depends in part
on the relative intensities of the various harmonics, and in part on
how they are excited initially (the attack quality of the sound). (We
will discuss the topics of pitch and quality further in later chapters.)

4.5 Fourier Analysis

Most musical instruments produce sounds that are nearly periodic.
That is, one overall cycle of the waveform repeats, or nearly repeats,
over and over again. Looking at this in another way, traditional mu-
sical tones, of the voice or of an instrument, are periodic, or nearly
periodic. Hence, it is pertinent to consider the general qualities of
periodic sounds. Any periodic waveform can be approximated by a
number of sinusoidal components that are harmonics of a funda-
mental frequency. That fundamental frequency may or may not be
present in the sound. It is the reciprocal of the period of the wave-
form measured in seconds.

This is illustrated in figure 4.6 by three approximations of a saw-
tooth waveform. In approximating a sawtooth waveform we add har-
monic-related sine waves whose frequencies are f, 2f, 3f, and so on,
and whose amplitudes are inversely proportional to the frequencies.
Three sine waves give a very poor approximation to a sawtooth. A
better approximation is given by 6 sinusoidal components, and a
still better approximation by 12.




4. Sound Waves and Sine Waves 45

Figure 4.6 Representation of a sawtooth wave as the sum of one, two, and three sinusoids.

A true sawtooth waveform is a succession of vertical and slanting
straight-line segments. A Fourier series approximation to a true saw-
tooth waveform that uses a finite number of harmonically related
sine waves differs from the sawtooth waveform in two ways. In a
gross way, the approximation gets better and better as we include
more and more terms. But there is a persistent wiggle whose ampli-
tude decreases but whose frequency increases as we add more and
more terms. We will see later that the ear can sometimes hear such a
wiggle, as well as a pitch associated with a true sawtooth waveform.
Remember, from the equal loudness contours, that we can hear only
up to a given frequency, so if we add enough harmonic sinusoids to
our approximation of any wave, we can get perceptually as close as
we like.

A fitting of the sum of harmonically related sine waves to a peri-
odic waveform is called Fourier analysis.

Mathematically, the Fourier -series transform is defined by the
equations
v(t) = i C, ermi/T (4.2)

n=—co

C, = }ffﬁz v(t)em T dt | (4.3)

These describe the representation of a periodic time waveform v(t)
in terms of complex coefficients C, that represent the phases and
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amplitudes of the harmonic sinusoidal components (4.2), and the
expression for finding the coefficients C, from the waveform signal
v(t) (4.3). The coefficients C, are found by integrating over the period
(T) of the waveform.

What about waveforms that aren’t periodic? The equations

v(t) = [ V(f)er'Tdf (4.4)

V(f) = J“; v(t)er='T dt (4.5)

give expressions for an arbitrary, nonperiodic waveform in terms of
a complex sound spectrum V(f) that has frequencies ranging from
minus infinity to plus infinity, and an integral that, for a given wave-
form v(t), gives the complex spectral function V(f). Such an overall
resolution of a complete waveform into a spectrum is of limited use
in connection with music. For example, we could in principle find
the spectrum of a complete piece of music. This would tell us very
little that we would care to know. Today, most Fourier analyses of
waveforms are performed by computer programs, using a discrete
definition of the Fourier transform.

It is important to note that a waveform, that is, a plot one cycle
long of amplitude versus time, is a complete description of a peri-
odic waveform. A spectrum gives a complete description of a wave-
form, consisting of two numbers for each single frequency. These
two numbers can describe the real and imaginary parts of a complex
number, or they can describe the amplitude and phase of a particular
frequency component. Conversion back and forth from complex
number representation to amplitude and phase representation is ac-
complished simply.

In plots of spectra of sound waves, the phase of the spectral com-
ponents is seldom displayed. What is plotted against frequency is
usually how the amplitude varies with frequency. The amplitude is
often given in decibels. Or the square of the amplitude is plotted
versus frequency. This is called a power spectrum.

Is the phase of a Fourier component important? Figure 4.7 shows
4 periods of waveforms made up of 16 sinusoidal components with
harmonic frequencies (f,, 2f,, 3f, etc.) having equal amplitudes
but different phases. The waveforms look very different. The top-
most waveform is a sequence of narrow spikes with wiggles in be-
tween. In the center waveform the phases have been chosen so as to
make each repeated cycle of the waveform look like a sinusoid of
decreasing frequency, also called a chirp. In the waveform at the
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The effect of phase on waveform. Sixteen harmonically related sine waves of equal ampli-
tude make up the three waveforms, with the only difference being phase.

bottom, the relative phases were chosen at random, and the wave-
form looks like a repeating noise. Although the amplitude spectrum
is the same for all three waveforms, the phase spectra are different
and the waveforms look very different. These three different wave-
forms sound different at 27.5 Hz with headphones. At 220 Hz the
sounds scarcely differ with headphones. At 880 Hz there is no differ-
ence in sound. In a reverberant room, differences are small even at
27 bkl

Partly because we don’t listen through headphones, and partly be-
cause most pitches are higher than 27.5 Hz, most plots of spectra
take no account of phase.

It can be important to know how the frequency content of a musi-
cal sound changes with time. Many sustained musical sounds have
small, nearly periodic changes of amplitude (tremolo) or of fre-
quency (vibrato). And there are attack and decay portions of musical
sounds. As an example of the importance of this, Jean-Claude Risset
and Max Mathews found in 1969 that in the sounds of brassy instru-
ments, the higher harmonics rise later than the lower harmonics.
This is useful, indeed necessary, in synthesizing sounds with a
brassy timbre. How can we present a changing spectrum in a way
that is informative to the eye? One way of representing changing
spectra is to plot successive spectra a little above and to the right of
one another, so as to give a sense of perspective in time. Figure 4.8
shows successive spectra of a sine wave with a little vibrato that
shifts the peak a little to the left, then back, repeating this pattern
periodically.

There is another way of representing changing spectra, a represen-
tation by sonograms (also called spectrograms). This is particularly
valuable in studying very complicated sounds such as speech. A so-
nogram of speech is shown in figure 4.9. The amplitude at a given
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Figure 4.8 A “waterfall spectrum” representation of a sinusoidal sound with a slow sinusoidal varia-
tion of frequency with time.

frequency is represented by darkness (pure white represents zero
amplitude). Distance from the bottom represents frequency. Time is
plotted left to right. The two sonograms are of the same speech
sound. In the upper sonogram, resolution is good in the frequency
direction—we can see individual harmonic tracks—but it is blurred
in the time direction. In the lower sonogram the resolution is good
in the time direction—we can see individual pitch periods repre-
senting the vibrations of the vocal folds—but it is fuzzy in the fre-
quency direction. Resolution can’t be sharp in both directions. If we
want precise pitch, we must observe the waveform for many periods.
If we want precise time, we must observe the waveform for only part
of a period. In general, the product of resolution in frequency and
resolution in time is constant. This is a mathematical limitation that
has nothing to do with the nature of the sound source.

Fourier analysis, the representation of a periodic waveform in
terms of sine waves, is an essential tool in the study of musical
sound. It allows us to determine the frequency components of a
sound and to determine how those components change with time.
Is the waveform or the spectrum better? If you are looking for a weak
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reflection following a short sound (as in radar), the waveform is bet-
ter. But suppose you want to find the sound of a tin whistle in the
midst of orchestral noise. You may have a chance with a spectral
analysis that sharply separates sound energy in frequency. You
won't have a chance by just looking at the waveform. So both wave-
forms and spectra are legitimate and useful ways of depicting
sounds.

What we actually do in Fourier analysis of musical sounds is to
use a computer program, called a fast Fourier transform (FFT). The
analysis produces a spectrum that gives both amplitude and phase
information, so that the waveform can be reconstructed from the
spectrum obtained. Or the amplitude alone can be used in a spectral
plot. Of an actual sound wave, we take the spectrum of a selected or
windowed portion of a musical sound that may be several periods
long.

Figure 4.10 illustrates the process of windowing. At the top are a
few periods of a sine wave. In the center is a windowing function.
This is multiplied by the overall waveform to give the windowed
portion of the waveform, shown at the bottom. In analyzing the
waveform, a succession of overlapping windows is used to find out
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Windowed time function. Top, time function, center, time window function, bottom, win-
dowed time function whose Fourier transform is to be taken.

how the spectrum varies with time. This is the way the data were
prepared for constructing the waterfall and sonogram plots of figures
4.8 and 4.9.

A strict reconstruction of the waveform from the spectrum ob-
tained from any one window would repeat over and over again, but
such a reconstruction is never made. In constructing the variation
of the spectrum with time, or in reconstructing the waveform from
the spectra of successive windowed waveforms, each windowed
waveform is limited to the time duration of the window. Such a
reconstruction necessarily goes to 0 at the ends of a particular
window, where the window and the windowed waveform go to 0.
The analysis of a succession of overlapping windowed waveforms
makes it possible to construct an overall spectrum that varies with
time, and from this overall spectrum the waveform itself can be
reconstructed.

Fourier analysis is a mathematical verity. It is useful in connection
with musical tones because the ear sorts sounds into ranges of fre-
quency, and tampering with the sound spectrum has clear effects on
what we hear and identify. Consider the sound of a human voice. If
we remove or filter out low frequencies, the sound becomes high
and tinny, but its musical pitch does not change. If we filter out
the high frequencies, the voice becomes dull. Nonperiodic fricative
(noise) components of a sound are identified through the higher fre-
quencies of their spectra. If we filter out the higher frequencies, we
can't tell f (as in fee) from s (as in see).
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4.9 Closing Thoughts
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perception.
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